Core of Exact Diagonalization

ExactDiagonalization.EDCore.EDType
ED(
    lattice::AbstractLattice, hilbert::Hilbert, terms::Union{Term, Tuple{Term, Vararg{Term}}}, targetspace::TargetSpace=TargetSpace(hilbert), dtype::Type{<:Number}=commontype(terms), boundary::Boundary=plain;
    neighbors::Union{Nothing, Int, Neighbors}=nothing, timer::TimerOutput=edtimer
)

Construct the exact diagonalization method for a quantum lattice system.

source
ExactDiagonalization.EDCore.EDType
ED(
    lattice::AbstractLattice,
    hilbert::Hilbert,
    terms::Union{Term, Tuple{Term, Vararg{Term}}},
    quantumnumbers::Union{AbelianNumber, Tuple{AbelianNumber, Vararg{AbelianNumber}}},
    dtype::Type{<:Number}=commontype(terms),
    boundary::Boundary=plain;
    neighbors::Union{Nothing, Int, Neighbors}=nothing,
    timer::TimerOutput=edtimer,
)

Construct the exact diagonalization method for a quantum lattice system.

source
ExactDiagonalization.EDCore.EDEigenType
EDEigen{V<:Number, T<:Number, S<:Sector} <: Factorization{T}

Eigen decomposition in exact diagonalization method.

Compared to the usual eigen decomposition Eigen, EDEigen contains a :sectors attribute to store the sectors of Hilbert space in which the eigen values and eigen vectors are computed. Furthermore, given that in different sectors the dimensions of the sub-Hilbert spaces can also be different, the :vectors attribute of EDEigen is a vector of vector instead of a matrix.

source
ExactDiagonalization.EDCore.EDMatrixMethod
EDMatrix(sector::Sector, m::SparseMatrixCSC)
EDMatrix(braket::NTuple{2, Sector}, m::SparseMatrixCSC)

Construct a matrix representation when

  1. the ket and bra spaces share the same bases;

2-3) the ket and bra spaces may be different.

source
ExactDiagonalization.EDCore.SectorType
abstract type Sector <: OperatorUnit

A sector of the Hilbert space which forms the bases of an irreducible representation of the Hamiltonian of a quantum lattice system.

source
ExactDiagonalization.EDCore.TargetSpaceMethod
TargetSpace(hilbert::Hilbert)
TargetSpace(hilbert::Hilbert, quantumnumbers::Union{AbelianNumber, Tuple{AbelianNumber, Vararg{AbelianNumber}}})

Construct a target space from the total Hilbert space and the associated quantum numbers.

source
LinearAlgebra.eigenMethod
eigen(ed::ED, sectors::Union{AbelianNumber, Sector}...; timer::TimerOutput=edtimer, kwargs...) -> EDEigen
eigen(ed::Algorithm{<:ED}, sectors::Union{AbelianNumber, Sector}...; kwargs...) -> EDEigen

Solve the eigen problem by the restarted Lanczos method provided by the Arpack package.

source
LinearAlgebra.eigenMethod
eigen(m::EDMatrix; nev=6, which=:SR, tol=0.0, maxiter=300, sigma=nothing, v₀=dtype(m)[]) -> Eigen

Solve the eigen problem by the restarted Lanczos method provided by the Arpack package.

source
LinearAlgebra.eigenMethod
eigen(ms::OperatorSum{<:EDMatrix}; nev::Int=1, tol::Real=0.0, maxiter::Int=300, v₀::Union{AbstractVector, Dict{<:Sector, <:AbstractVector}, Dict{<:AbelianNumber, <:AbstractVector}}=dtype(eltype(ms))[], timer::TimerOutput=edtimer)

Solve the eigen problem by the restarted Lanczos method provided by the Arpack package.

source
QuantumLattices.:⊕Method
⊕(sector::Sector, sectors::Union{Sector, TargetSpace}...) -> TargetSpace
⊕(target::TargetSpace, sectors::Union{Sector, TargetSpace}...) -> TargetSpace

Get the direct sum of sectors and target spaces.

source
QuantumLattices.QuantumOperators.matrixFunction
matrix(ops::Operators, braket::NTuple{2, Sector}, table, dtype=valtype(eltype(ops))) -> SparseMatrixCSC{dtype, Int}

Get the CSC-formed sparse matrix representation of a set of operators.

Here, table specifies the order of the operator ids.

source
QuantumLattices.QuantumOperators.matrixMethod
matrix(ed::ED, sectors::Union{AbelianNumber, Sector}...; timer::TimerOutput=edtimer, kwargs...) -> OperatorSum{<:EDMatrix}
matrix(ed::Algorithm{<:ED}, sectors::Union{AbelianNumber, Sector}...; kwargs...) -> OperatorSum{<:EDMatrix}

Get the sparse matrix representation of a quantum lattice system in the target space.

source