MeanFieldTheory
Documentation for MeanFieldTheory.
MeanFieldTheory.PureTBA
MeanFieldTheory.SCMF
MeanFieldTheory.constant
MeanFieldTheory.meanfield
MeanFieldTheory.normal
MeanFieldTheory.Ω
MeanFieldTheory.Ω₀
TightBindingApproximation.Fitting.optimize!
MeanFieldTheory.PureTBA
— Typeconst PureTBA{K<:TBAKind} = Union{SimpleTBA{K}, CompositeTBA{K}}
Pure tight-binding-approximation, type alias for Union{SimpleTBA{K}, CompositeTBA{K}}
.
MeanFieldTheory.SCMF
— TypeSCMF{K<:Fermionic, N<:PureTBA{K}, B<:BrillouinZone, I<:Parameters, M<:PureTBA{K}, C<:Function} <: TBA{K, N, Nothing}
Self-consistent mean-field theory for fermionic systems.
MeanFieldTheory.constant
— Methodconstant(scmf::SCMF) -> Real
constant(scmf::Algorithm{<:SCMF}) -> Real
Get the constant part of the free energy of a fermionic system at the mean-field level.
MeanFieldTheory.meanfield
— Methodmeanfield(scmf::SCMF) -> TBA
meanfield(scmf::Algorithm{<:SCMF}) -> TBA
Get the mean-field part.
MeanFieldTheory.normal
— Methodnormal(scmf::SCMF) -> TBA
normal(scmf::Algorithm{<:SCMF}) -> TBA
Get the normal part.
MeanFieldTheory.Ω
— MethodΩ(scmf::SCMF; kwargs...) -> Real
Ω(scmf::Algorithm{<:SCMF}; kwargs...) -> Real
Get the free energy of a fermionic system at the mean-field level.
MeanFieldTheory.Ω₀
— MethodΩ₀(scmf::SCMF; kwargs...) -> Real
Ω₀(scmf::Algorithm{<:SCMF}; kwargs...) -> Real
Get the free energy of a fermionic system of the normal state at the mean-field level.
TightBindingApproximation.Fitting.optimize!
— Functionoptimize!(
scmf::Union{SCMF, Algorithm{<:SCMF}}, variables=keys(Parameters(meanfield(scmf)));
verbose=false,
method=LBFGS(),
options=Options(x_abstol=4*10^-6, f_abstol=4*10^-6, iterations=1000, show_trace=true),
condensation::Bool=false,
kwargs...
)
Optimize the order parameters of a fermionic system by the self-consistent mean-field theory.