Quantum operators
Quantum operators form an algebra over a field, which are vector spaces with a bilinear operation (often called the "multiplication") between vectors defined.
With the help of the structure constants of the algebra, the result of the bilinear operation between any arbitrary two vectors can be expressed by a sum of individual ones. Therefore, in principle, an algebra can be represented by the complete basis set of its corresponding vector space and a rank-3 tensor encapsulating its structure constants. It is noted that the "bilinear operation" is not restricted to the usual multiplication. For example, it is the commutator, which is a composition of the usual multiplication and subtraction (for any A and B, the commutator [A, B] is defined as [A, B]≝AB-BA) that serves as the bilinear operator for Lie algebras.
In general, there are three basic operations on quantum operators, i.e. the scalar multiplication between a scalar and a quantum operator, the usual addition and the usual multiplication between quantum operators. Other complicated operations can be composed from these basic ones. These basic operations are implemented in this module.
OperatorIndex
OperatorIndex is the building block of quantum operators, which specifies the basis of the vector space of the corresponding algebra.
OperatorProd and OperatorSum
OperatorProd defines the product operator as an entity of basis quantum operators while OperatorSum defines the summation as an entity of OperatorProds. Both of them are subtypes of QuantumOperator, which is the abstract type for all quantum operators.
An OperatorProd must have two predefined contents:
value::Number: the coefficient of the quantum operatorid::ID: the id of the quantum operator
Arithmetic operations (+, -, *, /) between a scalar, an OperatorProd or an OperatorSum is defined. See Manual for details.
Manual
QuantumLattices.QuantumOperators.LaTeX — TypeLaTeX{SP, SB}(body, spdelimiter::String=", ", sbdelimiter::String=", "; options...) where {SP, SB}LaTeX string representation of quantum operators.
QuantumLattices.QuantumOperators.LinearFunction — TypeLinearFunction{O<:Union{Union{}, OperatorPack}, F<:Function} <: LinearTransformationWrapper a function to be a linear transformation.
QuantumLattices.QuantumOperators.LinearTransformation — TypeLinearTransformation <: FunctionAbstract linear transformation on quantum operators.
QuantumLattices.QuantumOperators.LinearTransformation — Method(transformation::LinearTransformation)(ms::OperatorSet; kwargs...) -> OperatorSetGet the linear transformed quantum operators.
QuantumLattices.QuantumOperators.Matrixization — TypeMatrixization <: LinearTransformationMatrixization transformation.
QuantumLattices.QuantumOperators.Operator — TypeOperator{V, I<:ZeroAtLeast{OperatorIndex}} <: OperatorProd{V, I}Operator.
QuantumLattices.QuantumOperators.OperatorIndex — TypeOperatorIndex <: QuantumOperatorAn operator index is the irreducible symbolic unit to completely represent a quantum operator.
It plays the role of the symbols as in usual computer algebras while it can host internal structures, which is convenient to represent quantum operators with complicated spatial and/or internal degrees of freedom.
QuantumLattices.QuantumOperators.OperatorPack — TypeOperatorPack{V, I} <: QuantumOperatorEntity that represent the pack of a number and an id of a quantum operator.
Basically, a concrete subtype should contain two predefined contents:
value::V: the coefficient of the packid::I: the id of the pack
QuantumLattices.QuantumOperators.OperatorProd — TypeOperatorProd{V, I<:Tuple} <: OperatorPack{V, I}A special kind of OperatorPack, where the relation between the coefficient and each component of the operator id can be viewed as product.
QuantumLattices.QuantumOperators.OperatorSet — TypeOperatorSet{M<:OperatorPack} <: QuantumOperatorSet of OperatorPacks.
- The relation between two
OperatorPacks in anOperatorSetcan be viewed as addition. - But in general, only iteration over
OperatorPacks and length are supported. - To use arithmetic operations, please refer to its subtype,
OperatorSum.
QuantumLattices.QuantumOperators.OperatorSum — TypeOperatorSum{M<:OperatorPack, I} <: OperatorSet{M}Sum of OperatorPacks.
Similar items are automatically merged with the aid of the id system.
QuantumLattices.QuantumOperators.OperatorSum — MethodOperatorSum(ms)
OperatorSum(ms::QuantumOperator...)
OperatorSum{M}(ms) where {M<:OperatorPack}
OperatorSum{M}(ms::QuantumOperator...) where {M<:OperatorPack}Get the sum of OperatorPacks.
QuantumLattices.QuantumOperators.Operators — TypeOperators{O<:Operator, I<:ZeroAtLeast{OperatorIndex}}A set of operators.
Type alias for OperatorSum{O<:Operator, I<:ZeroAtLeast{OperatorIndex}}.
QuantumLattices.QuantumOperators.Operators — MethodOperators(opts::Operator...)
Operators{M}(opts::Operator...)Get a set of operators.
QuantumLattices.QuantumOperators.Permutation — TypePermutation{T} <: LinearTransformationPermutation transformation.
QuantumLattices.QuantumOperators.Permutation — Method(permutation::Permutation)(m::OperatorProd; rev::Bool=false, kwargs...) -> OperatorSumPermute the operator units of an OperatorProd to the descending order according to the table contained in permutation.
QuantumLattices.QuantumOperators.QuantumOperator — TypeQuantumOperatorAbstract type of any quantum operator.
QuantumLattices.QuantumOperators.TabledUnitSubstitution — TypeTabledUnitSubstitution{U<:OperatorIndex, S<:OperatorSum, T<:AbstractDict{U, S}} <: UnitSubstitution{U, S}A concrete unit substitution transformation, which stores every substitution of the old OperatorIndexs in its table as a dictionary.
QuantumLattices.QuantumOperators.UnitSubstitution — TypeUnitSubstitution{U<:OperatorIndex, S<:OperatorSum} <: LinearTransformationUnit substitution transformation, which substitutes each OperatorIndex in the old quantum operators to a new expression represented by an OperatorSum.
QuantumLattices.QuantumOperators.UnitSubstitution — Method(unitsubstitution::UnitSubstitution)(m::OperatorProd; kwargs...) -> OperatorSumSubstitute every OperatorIndex in an OperatorProd with a new OperatorSum.
QuantumLattices.ZeroAtLeast — MethodZeroAtLeast(::Type{U}, attrs::Vararg{NTuple{N}, M}) where {U<:OperatorIndex, N, M}Get the composite id from the components of singular ids.
Base.:* — Method*(factor::Number, m::OperatorIndex) -> Operator
*(m::OperatorIndex, factor::Number) -> Operator
*(m₁::OperatorIndex, m₂::OperatorIndex) -> Operator
*(factor::Number, m::OperatorPack) -> OperatorPack
*(m::OperatorPack, factor::Number) -> OperatorPack
*(m₁::OperatorPack, m₂::OperatorIndex) -> OperatorPack
*(m₁::OperatorIndex, m₁::OperatorPack) -> OperatorPack
*(m₁::OperatorPack, m₂::OperatorPack) -> OperatorPack
*(factor::Number, ms::OperatorSum) -> OperatorSum
*(ms::OperatorSum, factor::Number) -> OperatorSum
*(m::OperatorIndex, ms::OperatorSum) -> OperatorSum
*(ms::OperatorSum, m::OperatorIndex) -> OperatorSum
*(m::OperatorPack, ms::OperatorSum) -> OperatorSum
*(ms::OperatorSum, m::OperatorPack) -> OperatorSum
*(ms₁::OperatorSum, ms₂::OperatorSum) -> OperatorSumOverloaded * between quantum operators or a quantum operator and a number.
Base.:+ — Method+(m::QuantumOperator) -> typeof(m)
+(m₁::QuantumOperator, m₂::QuantumOperator) -> OperatorSum
+(factor::Number, m::QuantumOperator) -> OperatorSum
+(m::QuantumOperator, factor::Number) -> OperatorSumOverloaded + between quantum operators.
Base.:- — Method-(m::QuantumOperator) -> QuantumOperator
-(m₁::QuantumOperator, m₂::QuantumOperator) -> OperatorSum
-(factor::Number, m::QuantumOperator) -> OperatorSum
-(m::QuantumOperator, factor::Number) -> OperatorSumOverloaded - between quantum operators.
Base.:/ — Method/(m::QuantumOperator, factor::Number) -> QuantumOperatorOverloaded / between a quantum operator and a number.
Base.:// — Method//(m::QuantumOperator, factor::Number) -> QuantumOperatorOverloaded // between a quantum operator and a number.
Base.:^ — Method^(m::QuantumOperator, n::Integer) -> QuantumOperatorOverloaded ^ between a quantum operator and an integer.
Base.adjoint — Methodadjoint(id::ZeroAtLeast{OperatorIndex}) -> ZeroAtLeast{OperatorIndex}Get the adjoint of an id.
Base.adjoint — Methodadjoint(opts::Operators) -> OperatorsGet the adjoint of a set of operators.
Base.adjoint — Methodadjoint(m::Operator) -> OperatorGet the adjoint of an operator.
Base.conj — Methodconj(m::OperatorIndex) -> OperatorIndex
conj(m::OperatorPack) -> OperatorPack
conj(m::OperatorSum) -> OperatorSumGet the conjugation.
Base.convert — Methodconvert(::Type{M}, m::Number) where {M<:OperatorProd}Convert a number to a quantum operator.
Base.convert — Methodconvert(::Type{M}, u::OperatorIndex) where {M<:Operator}Convert an operator index to an operator.
Base.convert — Methodconvert(::Type{M}, m::OperatorPack) where {M<:OperatorPack}Convert a quantum operator from one type to another.
Base.eltype — Methodeltype(m::OperatorProd)
eltype(::Type{M}) where {M<:OperatorProd}Get the eltype of an OperatorProd.
Base.eltype — Methodeltype(ms::OperatorSet)
eltype(::Type{<:OperatorSet{M}}) where {M<:OperatorPack}Get the eltype of an OperatorSet.
Base.empty — Methodempty(ms::OperatorSum) -> typeof(ms)
empty!(ms::OperatorSum) -> typeof(ms)Get an empty copy or empty an OperatorSum.
Base.getindex — Methodgetindex(m::OperatorProd, i::Integer) -> eltype(idtype(m))
getindex(m::OperatorProd, slice) -> OperatorProdOverloaded [].
Base.getindex — Methodgetindex(ms::OperatorSum, index::Integer) -> eltype(ms)
getindex(ms::OperatorSum, indexes::AbstractVector{<:Integer}) -> typeof(ms)
getindex(ms::OperatorSum, ::Colon) -> typeof(ms)Overloaded [].
Base.getproperty — Methodgetproperty(id::ZeroAtLeast{OperatorIndex}, name::Symbol)Get the property of a composite id.
Base.haskey — Methodhaskey(ms::OperatorSum, id) -> BoolJudge whether an OperatorSum contains an OperatorPack with the given id.
Base.isapprox — Methodisapprox(m₁::OperatorPack, m₂::OperatorPack; atol::Real=atol, rtol::Real=rtol) -> BoolCompare two OperatorPacks and judge whether they are approximate to each other.
Base.isapprox — Methodisapprox(ms₁::OperatorSum, ms₂::OperatorSum; atol::Real=atol, rtol::Real=rtol) -> BoolCompare two OperatorSums and judge whether they are approximate to each other.
Base.iszero — Methodiszero(u::OperatorIndex) -> BoolJudge whether an OperatorIndex is zero, which is defined to be always false.
Base.iszero — Methodiszero(m::OperatorPack) -> BoolJudge whether an OperatorPack is zero, i.e., its value is zero.
Base.iszero — Methodiszero(ms::OperatorSet) -> BoolJudge whether an OperatorSet is zero, i.e, it does not contain any OperatorPack.
Base.iszero — Methodiszero(ms::OperatorSum) -> BoolJudge whether an OperatorSum is zero, i.e, it does not contain any OperatorPack.
Base.iterate — Methoditerate(m::OperatorProd)
iterate(m::OperatorProd, state)Iterate over the components of the id of an OperatorProd.
Base.iterate — Methoditerate(ms::OperatorSum)
iterate(ms::OperatorSum, state)Iterate over the OperatorPacks contained in an OperatorSum.
Base.length — Methodlength(m::OperatorProd) -> IntGet the length of an OperatorProd.
Base.length — Methodlength(ms::OperatorSum) -> IntGet the number of OperatorPacks contained in an OperatorSum.
Base.map! — Methodmap!(f::Function, ms::OperatorSum; kwargs...) -> typeof(ms)In place map of an OperatorSum by the function f elementally.
Base.one — Methodone(::Type{M}) where {M<:OperatorProd}
one(m::OperatorProd)Get the identity quantum operator.
Base.propertynames — Methodpropertynames(::Type{I}) where I<:ZeroAtLeast{OperatorIndex} -> ZeroAtLeast{Symbol}Get the property names of a composite id.
Base.replace — Methodreplace(m::OperatorPack, v) -> OperatorPackReplace the value of an OperatorPack.
Base.show — Methodshow(io::IO, ::MIME"text/latex", ops::AbstractVector{<:QuantumOperator})
show(io::IO, ::MIME"text/latex", ops::AbstractMatrix{<:QuantumOperator})Show a vector/matrix of quantum operators.
Base.show — Methodshow(io::IO, ::MIME"text/latex", m::QuantumOperator)Show a quantum operator.
Base.split — Methodsplit(m::OperatorProd) -> Tuple{valtype(m), Vararg{Any}}Split an OperatorProd into the coefficient and a sequence of the components of its id.
Base.valtype — Methodvaltype(m::OperatorPack)
valtype(::Type{T}) where {T<:OperatorPack}Get the type of the value of an OperatorPack.
Base.zero — Methodzero(m::QuantumOperator)Get a zero QuantumOperator.
Base.zero — Methodzero(::Type{M}) where {M<:OperatorIndex} -> OperatorSum
zero(::Type{M}) where {M<:OperatorPack} -> OperatorSum
zero(::Type{M}) where {M<:OperatorSum} -> OperatorSumGet the zero sum.
LaTeXStrings.latexstring — Methodlatexstring(u::OperatorIndex) -> StringLaTeX string representation of an operator index.
LaTeXStrings.latexstring — Methodlatexstring(opt::OperatorProd) -> StringGet the string representation of an operator in the LaTeX format.
LaTeXStrings.latexstring — Methodlatexstring(opts::OperatorSet) -> StringGet the string representation of a set of operators in the LaTeX format.
LinearAlgebra.dot — Methoddot(m₁::QuantumOperator, m₂::QuantumOperator)
dot(m::QuantumOperator, c::Number)
dot(c::Number, m::QuantumOperator)Dot product between two QuantumOperators or between a QuantumOperator and a number.
LinearAlgebra.ishermitian — Methodishermitian(id::ZeroAtLeast{OperatorIndex}) -> BoolJudge whether an id is Hermitian.
LinearAlgebra.ishermitian — Methodishermitian(opts::Operators) -> BoolJudge whether a set of operators as a whole is Hermitian.
LinearAlgebra.ishermitian — Methodishermitian(m::Operator) -> BoolJudge whether an operator is Hermitian.
LinearAlgebra.mul! — Methodmul!(ms::OperatorSum, factor::Number) -> OperatorSumGet the in-place multiplication of an OperatorSum with a number.
LinearAlgebra.rank — Methodrank(id::ZeroAtLeast{OperatorIndex}) -> Int
rank(::Type{<:ZeroAtLeast{OperatorIndex, N}}) where N -> IntGet the rank of an id.
LinearAlgebra.rank — Methodrank(m::OperatorProd) -> Int
rank(::Type{M}) where {M<:OperatorProd} -> IntGet the rank of an OperatorProd.
QuantumLattices.:⊗ — Method⊗(id::OperatorIndex...)
⊗(u::OperatorIndex, id::ZeroAtLeast{OperatorIndex})
⊗(id::ZeroAtLeast{OperatorIndex}, u::OperatorIndex)
⊗(id₁::ZeroAtLeast{OperatorIndex}, id₂::ZeroAtLeast{OperatorIndex})Get the id from operator units/ids.
QuantumLattices.QuantumOperators.idtype — Methodidtype(m::OperatorPack)
idtype(::Type{T}) where {T<:OperatorPack}Get the type of the id of an OperatorPack.
QuantumLattices.QuantumOperators.isequivalenttoscalar — Methodisequivalenttoscalar(m::QuantumOperator) -> Bool
isequivalenttoscalar(::Type{M}) where {M<:QuantumOperator} -> BoolJudge whether a QuantumOperator is equivalent to a scalar.
QuantumLattices.QuantumOperators.isequivalenttoscalar — Methodisequivalenttoscalar(::Type{<:OperatorPack}) -> Bool
isequivalenttoscalar(::Type{<:OperatorPack{V, Tuple{}} where V}) -> BoolJudge whether an OperatorPack is equivalent to a scalar.
QuantumLattices.QuantumOperators.latexformat — Methodlatexformat(T::Type{<:OperatorIndex}) -> LaTeX
latexformat(T::Type{<:OperatorIndex}, l::LaTeX) -> LaTeXGet/Set the LaTeX format for a subtype of OperatorIndex.
QuantumLattices.QuantumOperators.latexname — Methodlatexname(T::Type{<:OperatorIndex}) -> SymbolGet the name of a type of OperatorIndex in the latex format lookups.
QuantumLattices.QuantumOperators.matrix — FunctionmatrixGeneric matrix representation.
QuantumLattices.QuantumOperators.operatortype — Methodoperatortype(m::QuantumOperator)Get the operator type of a QuantumOperator, which is defined to be the type it corresponds to so that addition between two such objects can be performed directly. Usually, it is a subtype of OperatorPack.
QuantumLattices.QuantumOperators.operatortype — Methodoperatortype(::Type{M}) where {M<:OperatorIndex}
operatortype(::Type{M}) where {M<:OperatorPack}
operatortype(::Type{M}) where {M<:OperatorSet}Get the corresponding OperatorPack type of a quantum operator.
QuantumLattices.QuantumOperators.scalartype — Methodscalartype(t)
scalartype(::Type{T}) where {T<:Number}
scalartype(::Type{<:AbstractArray{T}}) where T
scalartype(::Type{<:ZeroAtLeast{T}}) where TGet the scalar type of an object.
QuantumLattices.QuantumOperators.scalartype — Methodscalartype(::Type{M}) where {M<:QuantumOperator}Get the scalar type of a QuantumOperator.
QuantumLattices.QuantumOperators.scalartype — Methodscalartype(::Type{T}) where {T<:OperatorPack}Scalar type of the coefficient of an OperatorPack.
QuantumLattices.QuantumOperators.script — Methodscript(u::OperatorIndex, l::LaTeX, ::Val{:BD}) -> Any
script(u::OperatorIndex, l::LaTeX, ::Val{:SP}) -> Tuple
script(u::OperatorIndex, l::LaTeX, ::Val{:SB}) -> TupleGet the body/superscript/subscript of the LaTeX string representation of an operator index.
QuantumLattices.QuantumOperators.script — Methodscript(u::OperatorIndex, ::Val{}; kwargs...) -> StringDefault script for an operator index, which always return an empty string.
QuantumLattices.QuantumOperators.sequence — Methodsequence(m::OperatorProd, table) -> NTuple{rank(m), Int}Get the sequence of the id of a quantum operator according to a table.
QuantumLattices.add! — Methodadd!(destination, transformation::LinearTransformation, op::OperatorPack; kwargs...) -> typeof(destination)
add!(destination, transformation::LinearTransformation, op::OperatorSet; kwargs...) -> typeof(destination)Add the result of the linear transformation on a quantum operator to the destination.
QuantumLattices.add! — Methodadd!(ms::OperatorSum) -> typeof(ms)
add!(ms::OperatorSum, m::Union{Number, OperatorIndex, OperatorPack}) -> typeof(ms)
add!(ms::OperatorSum, mms::OperatorSum) -> typeof(ms)Get the in-place addition of quantum operators.
QuantumLattices.div! — Methoddiv!(ms::OperatorSum, factor::Number) -> OperatorSumGet the in-place division of an OperatorSum with a number.
QuantumLattices.expand — Methodexpand(m::QuantumOperator) -> typeof(m)Expand a QuantumOperator, which is defined to be itself.
QuantumLattices.id — Methodid(m::OperatorPack) -> idtype(m)Get the id of an OperatorPack.
QuantumLattices.sub! — Methodsub!(ms::OperatorSum) -> typeof(ms)
sub!(ms::OperatorSum, m::Union{Number, OperatorIndex, OperatorPack}) -> typeof(ms)
sub!(ms::OperatorSum, mms::OperatorSum) -> typeof(ms)Get the in-place subtraction of quantum operators.
QuantumLattices.update! — Methodupdate!(m::QuantumOperator; parameters...) -> typeof(m)Update the parameters of a QuantumOperator in place and return the updated one.
By default, the parameter update of a QuantumOperator does nothing.
QuantumLattices.value — Methodvalue(m::OperatorPack) -> valtype(m)Get the value of an OperatorPack.