RandomPhaseApproximation.EigenRPA
— TypeEigenRPA{P<:ReciprocalSpace, B<:BrillouinZone} <: Action
Eigen problem for standard random phase approximation.
RandomPhaseApproximation.EigenRPA
— MethodEigenRPA(reciprocalspace::ReciprocalSpace, brillouinzone::BrillouinZone; eigvals_only::Bool=true, options...)
Construct a EigenRPA
type. Attribute options
contains (gauge=:icoordinate, exchange=false, η=1e-8, temperature=1e-12, μ=0.0, bands=nothing)
.
RandomPhaseApproximation.PHVertexMatrix
— TypePHVertexMatrix{D<:Number, Vq, Vk, T} <: MatrixRepresentation
Matrix representation of the particle-hole channel of two-body interaction terms:
\[\frac{1}{N}\sum_{k₁k₂q, \, \alpha\beta m n}[V^{ph}_{\alpha\beta, \, mn}(q)-V^{ph}_{\alpha m, \, \beta n}(k₂-k₁)]c^\dagger_{k₁-q, \, \alpha}c_{k₁, \, \beta}c^\dagger_{k₂, \, n}c_{k₂-q, \, m}\]
When the k₁ and k₂ are nothing, the exchange terms are omitted. Here, the Fourier transformation reads:
\[c^†_i = \frac{1}{\sqrt{N}} ∑_k c^†_k \exp(-i k rᵢ)\]
RandomPhaseApproximation.PHVertexMatrix
— MethodPHVertexMatrix{D}(q, k₁, k₂, table, gauge::Symbol=:icoordinate) where {D<:Number}
PHVertexMatrix{D}(table, gauge::Symbol=:icoordinate) where {D<:Number}
PHVertexMatrix{D}(q, table, gauge::Symbol=:icoordinate) where {D<:Number}
Get the matrix representation of particle-hole channel.
RandomPhaseApproximation.ParticleHoleSusceptibility
— TypeParticleHoleSusceptibility{P<:ReciprocalSpace, B<:BrillouinZone, E<:AbstractVector, S<:Operators} <: Action
Calculate the particle-hole susceptibility within random phase approximation.
Attribute options
contains (η=0.01, gauge=:icoordinate, temperature=1e-12, μ=0.0, findk=false)
.
RandomPhaseApproximation.ParticleHoleSusceptibility
— MethodParticleHoleSusceptibility(reciprocalspace::ReciprocalSpace, brillouinzone::BrillouinZone, energies::Vector, operators::Tuple{Vector{<:Operators}, Vector{<:Operators}}; options...)
Construct a ParticleHoleSusceptibility
type.
RandomPhaseApproximation.RPA
— TypeRPA{L<:AbstractTBA, U<:RepresentationGenerator} <: Frontend
Random phase approximation in a fermionic system.
RandomPhaseApproximation.RPA
— MethodRPA(tba::AbstractTBA, interactions::Union{Term, Tuple{Term, Vararg{Term}}}; neighbors::Union{Nothing, Int, Neighbors}=nothing)
RPA(lattice::AbstractLattice, hilbert::Hilbert, terms::Union{Term, Tuple{Term, Vararg{Term}}}, interactions::Union{Term, Tuple{Term, Vararg{Term}}}; neighbors::Union{Nothing, Int, Neighbors}=nothing)
RPA(tba::AbstractTBA{K, <:AnalyticalExpression}, hilbert::Hilbert, interactions::Union{Term, Tuple{Term, Vararg{Term}}}; neighbors::Union{Nothing, Int, Neighbors}=nothing) where {K<:TBAKind}
Construct an RPA
type.
QuantumLattices.QuantumOperators.matrix
— Functionmatrix(rpa::RPA, field::Symbol=:int; k=nothing, gauge=:icoordinate, kwargs...) -> Matrix
Get matrix of particle-hole channel of interaction.
QuantumLattices.add!
— Methodadd!(dest::AbstractMatrix, mr::PHVertexMatrix, m::Operator; kwargs...)
Get the matrix representation of an operator and add it to destination.
RandomPhaseApproximation.chiq
— Methodchiq(vph::Array{<:Number, 3}, chi0::Array{ComplexF64, 4}) -> Array{ComplexF64, 4}
Get the susceptibility $χ_{αβ}(ω, q)$.
RandomPhaseApproximation.chiq0
— Methodchiq0(tba::AbstractTBA, brillouinzone::BrillouinZone, reciprocalspace::ReciprocalSpace, energies::Vector{Float64}; η::Float64=0.01, temperature::Float64=1e-12, μ::Float64=0.0, scflag=false, kwargs...) -> Array{Float64, 4}
Get the particle-hole susceptibilities χ⁰(ω, q).
Arguments
energies
: the energy pointsη
: the magnitude of broadentemperature
: the temperatureμ
: the chemical potentialscflag
: false(default) for particle-hole channel, true for Nambu spacekwargs
: the keyword arguments transferred to thematrix(tba; kwargs...)
function
RandomPhaseApproximation.chiq0chiq
— Methodchiq0chiq(
eigvecs::Array{ComplexF64, 3}, eigvals::Array{Float64, 2}, brillouinzone::BrillouinZone, reciprocalspace::ReciprocalSpace, vph::Array{<:Number, 3}, energies::Vector{Float64};
η::Float64=0.01, temperature::Float64=1e-12, μ::Float64=0.0, scflag=false
) -> Tuple{Array{ComplexF64, 4}, Array{ComplexF64, 4}}
Get the particle-hole susceptibilities χ⁰(ω, q) and χ(ω, q). The spectral function is satisfied by $A(ω, q) = \text{Im}[χ(ω+i0⁺, q)]$.
RandomPhaseApproximation.chiq0chiq
— Methodchiq0chiq(
tba::AbstractTBA, brillouinzone::AbstractVector{<:AbstractVector}, reciprocalspace::ReciprocalSpace, vph::Array{<:Number, 3}, energies::AbstractVector;
η::Float64=0.01, temperature::Float64=1e-12, μ::Float64=0.0, scflag=false, kwargs...
) -> Tuple{Array{ComplexF64, 4}, Array{ComplexF64, 4}}
Get the particle-hole susceptibilities χ⁰(ω, q) and χ(ω, q). The spectral function is satisfied by $A(ω, q) = \text{Im}[χ(ω+i0⁺, q)]$.
Arguments
vph
: the bare particle-hole vertex (vph[ndim, ndim, nq])energies
: the energy pointsη
: the magnitude of broadentemperature
: the temperatureμ
: the chemical potentialscflag
: false (default, no superconductivity), or true (BdG model)kwargs
: the keyword arguments transferred to thematrix(tba; kwargs...)
function
RandomPhaseApproximation.correlation
— Methodcorrelation(χ::Array{<:Number, 4}, reciprocalspace::ReciprocalSpace, operators::Tuple{Vector{<:Operators}, Vector{<:Operators}}, table; gauge=:rcoordinate) -> Matrix
Return physical particle-hole susceptibility.
RandomPhaseApproximation.eigenrpa
— Methodeigenrpa(
tba::AbstractTBA, brillouinzone::BrillouinZone, reciprocalspace::ReciprocalSpace, vph::Array{<:Number, 5};
temperature::Float64=1e-12, μ::Float64=0.0, eigvals_only::Bool=true, η::Float64=1e-6, bands::Union{UnitRange{Int}, StepRange{Int,Int}, Vector{Int}, Nothing}=nothing, kwargs...
) -> Tuple{Array{Array{ComplexF64, 1}, 1}, Array{Matrix{ComplexF64}, 1}, Array{Matrix{ComplexF64}, 1}}
Get the eigenvalues, eigenvectors, and unitary transformation (from orbital to band) of particle-hole susceptibilities $χ_{αβ}(ω, k₁, k₂, q)$.
Now only the zero-temperature case is supported.
Arguments
vph
: the particle-hole vertex, e.g. vph[ndim,ndim,nk,nk,nq] where sqrt(ndim) is the number of degrees of freedom in the unit cell, nk=length(brillouinzone), nq=length(reciprocalspace)temperature
: the temperatureμ
: the chemical potentialeigvals_only
: only the eigenvalues needed, when it is false the cholesky method is usedη
: the small number to avoid the semi-positive Hamiltonian, i.e. Hamiltonian+diagm([η, η, ...])bands
: the selected bands to calculate the χ₀kwargs
: the keyword arguments transferred to thematrix(tba; kwargs...)
function
RandomPhaseApproximation.fermifunc
— Functionfermifunc(e::Real, temperature::Real=1e-12, μ::Real=0.0) -> Float64
Fermi distribution function. Boltzmann constant $k_B=1$.
RandomPhaseApproximation.isevenperm
— Methodisevenperm(p::Vector) -> Bool
Judge the parity of permutations.
RandomPhaseApproximation.issamesite
— Methodissamesite(op₁::CompositeIndex, op₂::CompositeIndex) -> Bool
Judge whether two composite indices are on site same site.
RandomPhaseApproximation.vertex
— Functionvertex(rpa::RPA, reciprocalspace::AbstractVector{<:AbstractVector}, gauge=:icoordinate) -> Array{<:Number, 3}
Return particle-hole vertex induced by the direct channel of interaction (except the Hubbard interaction which include both direct and exchange channels).
RecipesBase.apply_recipe
— Function@recipe plot(pack::Tuple{Algorithm{<:RPA}, Assignment{<:ParticleHoleSusceptibility}}, mode::Symbol=:χ)
Define the recipe for the visualization of particle-hole susceptibilities along a path.
RecipesBase.apply_recipe
— Function@recipe plot(pack::Tuple{Algorithm{<:RPA}, Assignment{<:ParticleHoleSusceptibility}}, ecut::Float64, dE::Float64=1e-3, mode::Symbol=:χ, reim::Symbol=:re)
Define the recipe for the visualization of particle-hole susceptibilities at an energy cut.
RecipesBase.apply_recipe
— Function@recipe plot(pack::Tuple{Algorithm{<:RPA}, Assignment{<:EigenRPA}}, reim::Symbol=:re)
Define the recipe for the visualization of particle-hole susceptibilities.