SecondOrderPerturbationTheory

Documentation for SecondOrderPerturbationTheory.

Getting Started

Examples of second order perturbation theory

<!– ## Manuals

QuantumLattices.DegreesOfFreedom.MetricMethod
Metric(::EDKind{:FED}, hilbert::Hilbert{<:Fock}) -> OperatorUnitToTuple
Metric(::EDKind{:SED}, hilbert::Hilbert{<:Spin}) -> OperatorUnitToTuple

Get the index-to-tuple metric for a free fermionic/bosonic system or a free phononic system.

source
SecondOrderPerturbationTheory.ExactDiagonalization5.EDMethod
ED(lattice::AbstractLattice, hilbert::Hilbert, terms::Tuple{Vararg{Term}}, targetspace::TargetSpace; neighbors::Union{Nothing, Int, Neighbors}=nothing, boundary::Boundary=plain)

Construct the exact diagonalization method for a quantum lattice system.

source
Base.countMethod
count(basis::BinaryBasis) -> Int
count(basis::BinaryBasis, start::Integer, stop::Integer) -> Int

Count the number of occupied single-particle states.

source
Base.isoneMethod
isone(basis::BinaryBasis, state::Integer) -> Bool

Judge whether the specified single-particle state is occupied for a basis.

source
Base.iszeroMethod
iszero(basis::BinaryBasis, state::Integer) -> Bool

Judge whether the specified single-particle state is unoccupied for a basis.

source
Base.iterateFunction
iterate(basis::BinaryBasis, state=nothing)

Iterate over the numbers of the occupied single-particle orbitals.

source
Base.oneMethod
one(basis::BinaryBasis, state::Integer) -> BinaryBasis

Get a new basis with the specified single-particle state occupied.

source
Base.zeroMethod
zero(basis::BinaryBasis, state::Integer) -> BinaryBasis

Get a new basis with the specified single-particle state unoccupied.

source
LinearAlgebra.eigenMethod
eigen(m::EDMatrix; nev=6, which=:SR, tol=0.0, maxiter=300, sigma=nothing, v₀=dtype(m)[]) -> Eigen

Solve the eigen problem by the restarted Lanczos method provided by the Arpack package.

source
QuantumLattices.:⊕Method
⊕(sector::Sector, sectors::Union{Sector, TargetSpace}...) -> TargetSpace
⊕(target::TargetSpace, sectors::Union{Sector, TargetSpace}...) -> TargetSpace

Get the direct sum of sectors and target spaces.

source
QuantumLattices.:⊗Method
⊗(bs₁::BinaryBases, bs₂::BinaryBases) -> BinaryBases

Get the direct product of two sets of binary bases.

source
QuantumLattices.:⊗Method
⊗(basis₁::BinaryBasis, basis₂::BinaryBasis) -> BinaryBasis

Get the direct product of two binary bases.

source
QuantumLattices.QuantumOperators.matrixMethod
matrix(ed::ED, sector::Sector; kwargs...) -> EDMatrix
matrix(ed::ED, sector=first(ed.Hₘ.transformation.brakets); kwargs...) -> EDMatrix

Get the sparse matrix representation of a quantum lattice system in a sector of the target space.

source
QuantumLattices.QuantumOperators.matrixMethod
matrix(op::Operator, braket::NTuple{2, BinaryBases}, table; dtype=valtype(op)) -> SparseMatrixCSC{dtype, Int}
matrix(ops::Operators, braket::NTuple{2, BinaryBases}, table; dtype=valtype(eltype(ops))) -> SparseMatrixCSC{dtype, Int}

Get the CSC-formed sparse matrix representation of an operator.

Here, table specifies the order of the operator ids.

source
SecondOrderPerturbationTheory.ExactDiagonalization5.sumableMethod
sumable(bs₁::BinaryBases, bs₂::BinaryBases) -> Bool

Judge whether two sets of binary bases could be direct summed.

Strictly speaking, two sets of binary bases could be direct summed if and only if they have no intersection. The time complexity to check the intersection is O(n log n), which costs a lot when the dimension of the binary bases is huge. It is also possible to judge whether they could be direct summed by close investigations on their ids, i.e. the single-particle states and occupation number. It turns out that this is a multi-variable pure integer linear programming problem. In the future, this function would be implemented based on this observation. At present, the direct summability should be handled by the users in priori.

source
SecondOrderPerturbationTheory.SOPCore.CoefficienceMethod
Coefficience(bonds::AbstractVector{<:Bond}, observables::Dict{Int, I}; options...) where {I<:Union{AbstractVector{<:AbstractMatrix}, Tuple{Vararg{Term}}}}
Coefficience(bonds::AbstractVector{<:Bond}, observables::Dict{Int, I}; options...) where {I<:Union{AbstractVector{<:AbstractMatrix}, Tuple{Vararg{Term}}}}
Coefficience(bonds::AbstractVector{<:Bond}, npoints::Int, ob::I=Tuple{}(); options...) where {I<:Union{AbstractVector{<:AbstractMatrix}, Tuple{Vararg{Term}}}}

η attribute in options is truncation of completeness of physical quantities. order attribute (order=-1,0,2) choose the order of matrix of effective hamiltonian to obtain the exchange coefficiences. npoints = length(lattice).

source
SecondOrderPerturbationTheory.SOPCore.ProjectStateMethod
ProjectState(ops::Operators, braket::BinaryBases, table; pick::Union{UnitRange{Int}, Vector{Int}, Colon}=:)
ProjectState(ops::Operators, ts::TargetSpace, table, pick::Vector{Vector{Int}})

Construct ProjectState. The pick::Union{UnitRange{Int}, Vector{Int}, Colon} argument picks the low-energy states. The i-th element of arguement pick vector is the loaction of low-energy states in the i-th Sector of TargetSpace.

source
SecondOrderPerturbationTheory.SOPCore.SOPTType
SOPT{L<:AbstractLattice, G₁<:OperatorGenerator, G₀<:OperatorGenerator, PT<:SecondOrderPerturbation} <: Frontend

Second order perturbation theory method of a electronic quantum lattice system.

source
SecondOrderPerturbationTheory.SOPCore.SOPTMethod
SOPT(lattice::AbstractLattice, hilbert::Hilbert, terms₁::Tuple{Vararg{Term}}, terms₀::Tuple{Vararg{Term}}, binaryconfigure::BinaryConfigure, lowstate::PickState; neighbors::Union{Nothing, Int, Neighbors}=nothing, boundary::Boundary=plain)

Construct the second order perturbation method for a quantum lattice system.

source
SecondOrderPerturbationTheory.SOPCore.SOPTMatrixType
SOPTMatrix(bond::Bond, P₀::ProjectStateBond, m₀::Matrix, m₂::Matrix)

Matrix representation of the low-energy hamiltionian. The proper order for representing basis vectors is to start with the left space (bond[1]) and then proceed to the right space (bond[2]), i.e. kron(right, left).

Arguments

-bond: bond of lattice -P₀: projected state -m₀: matrix representation of the zeroth order (<H₀>) of the low-energy hamiltionian -m₀₁: matrix representation of the zeroth order (<H₁>) of the low-energy hamiltionian -m₂: matrix representation of second order of the low-energy hamiltionian

source
SecondOrderPerturbationTheory.SOPCore.SecondOrderPerturbationType
SecondOrderPerturbation{B<:BinaryConfigure, L<:PickState} <: Transformation
(::SecondOrderPerturbation)(H₁::OperatorGenerator, p₀::Dict{T,<:ProjectState}, qₚ::Dict{T,<:ProjectState}, qₘ::Dict{T,<:ProjectState}, bond::Bond) where T<:Int  -> SOPTMatrix
(::SecondOrderPerturbation)(H₀::OperatorGenerator, H₁::OperatorGenerator, bond::Bond) -> SOPTMatrix

A type.

source
Base.:<<Method
Base.:(<<)(bs::BinaryBases, n::Int) -> BinaryBases
source
Base.:<<Method
Base.:(<<)(ps::ProjectState, n::Int) -> ProjectState

Left bit shift opeartor. The BinaryBasis is left shifted by n bits.

source
QuantumLattices.:⊕Method
⊕(ps₁::ProjectState, ps₂::ProjectState) -> ProjectState

Get the direct sum of two projected states.

source
QuantumLattices.:⊗Method
⊗(ps₁::ProjectState, ps₂::ProjectState) -> ProjectState

Get the direct product of two sets of projected states.

source
QuantumLattices.QuantumOperators.matrixMethod
matrix(ops::Operators, ts₁::TargetSpace, ts₂::TargetSpace, table) -> Matrix
matrix(ops::Operators, ts::TargetSpace, table) -> Matrix

Get the matrix of direct sum of submatrices.

source
SecondOrderPerturbationTheory.SOPCore.coefficience_projectFunction
coefficience_project(m₂::Matrix{<:Number}, bond::Bond, ob::Dict{Int, <:AbstractVector{<:Matrix{<:Number}}}, η::Float64=1e-14) -> Matrix

Get the coefficience of exchange interaction. The row index corresponds to bond[1], column index corresponds to bond[2].

source
SecondOrderPerturbationTheory.SOPCore.hamiltonianeffFunction
hamiltonianeff(psp::ProjectStateBond, psq::ProjectStateBond, h1::Operators, table::Table, bond::Union{Bond, Nothing}=nothing)   ->Tuple{Matrix, Matrix, Matrix}

Get the effective Hamiltonian, the first and second terms of the result correspond to the zero-th and 2nd perturbations respectively.

source
SecondOrderPerturbationTheory.SOPCore.projectstate_pointsMethod
projectstate_points(bc::BinaryConfigure, ls::PickState, H₀::OperatorGenerator, points::AbstractVector{<:Point}) -> Tuple{Dict, Dict, Dict, Dict}

Construct the ProjectState` type of low-energy states with N-particle space, high-energy states with (N+1)-particle space, high-energy states with (N-1)-particle space, and high-energy states with N-particle space.

source
SecondOrderPerturbationTheory.SOPCore.projectstate_pointsMethod
projectstate_points(sopt::SOPT) -> Tuple{Dict{Int, ProjectState}, Dict{Int, ProjectState}, Dict{Int, ProjectState}, Dict{Int, ProjectState}}

Construct ProjectState on all points. Construct the ProjectState` type of low-energy states with N-particle space, high-energy states with (N+1)-particle space, high-energy states with (N-1)-particle space, and high-energy states with N-particle space.

source

–>