SecondOrderPerturbationTheory
Documentation for SecondOrderPerturbationTheory.
QuantumLattices.DegreesOfFreedom.Metric
SecondOrderPerturbationTheory.ExactDiagonalization5.BinaryBases
SecondOrderPerturbationTheory.ExactDiagonalization5.BinaryBases
SecondOrderPerturbationTheory.ExactDiagonalization5.BinaryBases
SecondOrderPerturbationTheory.ExactDiagonalization5.BinaryBasis
SecondOrderPerturbationTheory.ExactDiagonalization5.BinaryBasis
SecondOrderPerturbationTheory.ExactDiagonalization5.BinaryBasisRange
SecondOrderPerturbationTheory.ExactDiagonalization5.ED
SecondOrderPerturbationTheory.ExactDiagonalization5.ED
SecondOrderPerturbationTheory.ExactDiagonalization5.EDKind
SecondOrderPerturbationTheory.ExactDiagonalization5.EDMatrix
SecondOrderPerturbationTheory.ExactDiagonalization5.EDMatrix
SecondOrderPerturbationTheory.ExactDiagonalization5.EDMatrixRepresentation
SecondOrderPerturbationTheory.ExactDiagonalization5.EDMatrixRepresentation
SecondOrderPerturbationTheory.ExactDiagonalization5.Sector
SecondOrderPerturbationTheory.ExactDiagonalization5.SectorFilter
SecondOrderPerturbationTheory.ExactDiagonalization5.TargetSpace
SecondOrderPerturbationTheory.ExactDiagonalization5.TargetSpace
SecondOrderPerturbationTheory.SOPCore.BinaryConfigure
SecondOrderPerturbationTheory.SOPCore.Coefficience
SecondOrderPerturbationTheory.SOPCore.Coefficience
SecondOrderPerturbationTheory.SOPCore.PickState
SecondOrderPerturbationTheory.SOPCore.ProjectState
SecondOrderPerturbationTheory.SOPCore.ProjectState
SecondOrderPerturbationTheory.SOPCore.ProjectStateBond
SecondOrderPerturbationTheory.SOPCore.ProjectStateBond
SecondOrderPerturbationTheory.SOPCore.SOPT
SecondOrderPerturbationTheory.SOPCore.SOPT
SecondOrderPerturbationTheory.SOPCore.SOPTMatrix
SecondOrderPerturbationTheory.SOPCore.SecondOrderPerturationMetric
SecondOrderPerturbationTheory.SOPCore.SecondOrderPerturbation
Base.:<<
Base.:<<
Base.count
Base.isone
Base.iszero
Base.iterate
Base.one
Base.zero
LinearAlgebra.eigen
QuantumLattices.:⊕
QuantumLattices.:⊕
QuantumLattices.:⊗
QuantumLattices.:⊗
QuantumLattices.:⊗
QuantumLattices.QuantumOperators.matrix
QuantumLattices.QuantumOperators.matrix
QuantumLattices.QuantumOperators.matrix
QuantumLattices.QuantumOperators.matrix
QuantumLattices.dimension
QuantumLattices.dimension
QuantumLattices.expand
SecondOrderPerturbationTheory.ExactDiagonalization5.productable
SecondOrderPerturbationTheory.ExactDiagonalization5.sumable
SecondOrderPerturbationTheory.SOPCore.:⊠
SecondOrderPerturbationTheory.SOPCore.SpinOperatorGenerator
SecondOrderPerturbationTheory.SOPCore.coefficience_project
SecondOrderPerturbationTheory.SOPCore.coefficience_project
SecondOrderPerturbationTheory.SOPCore.hamiltonianeff
SecondOrderPerturbationTheory.SOPCore.observables_project
SecondOrderPerturbationTheory.SOPCore.projectstate_points
SecondOrderPerturbationTheory.SOPCore.projectstate_points
Getting Started
Examples of second order perturbation theory
<!– ## Manuals
QuantumLattices.DegreesOfFreedom.Metric
— MethodMetric(::EDKind{:FED}, hilbert::Hilbert{<:Fock}) -> OperatorUnitToTuple
Metric(::EDKind{:SED}, hilbert::Hilbert{<:Spin}) -> OperatorUnitToTuple
Get the index-to-tuple metric for a free fermionic/bosonic system or a free phononic system.
SecondOrderPerturbationTheory.ExactDiagonalization5.BinaryBases
— TypeBinaryBases{B<:BinaryBasis, T<:AbstractVector{B}} <: Sector
A set of binary bases.
SecondOrderPerturbationTheory.ExactDiagonalization5.BinaryBases
— MethodBinaryBases(nstate::Integer, nparticle::Integer)
BinaryBases(states, nparticle::Integer)
Construct a set of binary bases that preserves the particle number conservation.
SecondOrderPerturbationTheory.ExactDiagonalization5.BinaryBases
— MethodBinaryBases(nstate::Integer)
BinaryBases(states)
Construct a set of binary bases that does not preserve the particle number conservation.
SecondOrderPerturbationTheory.ExactDiagonalization5.BinaryBasis
— TypeBinaryBasis{I<:Unsigned}
Binary basis represented by an unsigned integer.
SecondOrderPerturbationTheory.ExactDiagonalization5.BinaryBasis
— MethodBinaryBasis(states; filter=index->true)
BinaryBasis{I}(states; filter=index->true) where {I<:Unsigned}
Construct a binary basis with the given occupied orbitals.
SecondOrderPerturbationTheory.ExactDiagonalization5.BinaryBasisRange
— TypeBinaryBasisRange{I<:Unsigned} <: VectorSpace{BinaryBasis{I}}
A continuous range of binary basis.
SecondOrderPerturbationTheory.ExactDiagonalization5.ED
— TypeED{K<:EDKind, L<:AbstractLattice, G<:OperatorGenerator, M<:Image} <: Frontend
Exact diagonalization method of a quantum lattice system.
SecondOrderPerturbationTheory.ExactDiagonalization5.ED
— MethodED(lattice::AbstractLattice, hilbert::Hilbert, terms::Tuple{Vararg{Term}}, targetspace::TargetSpace; neighbors::Union{Nothing, Int, Neighbors}=nothing, boundary::Boundary=plain)
Construct the exact diagonalization method for a quantum lattice system.
SecondOrderPerturbationTheory.ExactDiagonalization5.EDKind
— TypeEDKind{K}
The kind of the exact diagonalization method applied to a quantum lattice system.
SecondOrderPerturbationTheory.ExactDiagonalization5.EDMatrix
— TypeEDMatrix{S<:Sector, M<:SparseMatrixCSC} <: OperatorPack{M, Tuple{S, S}}
Matrix representation of quantum operators between a ket and a bra Hilbert space.
SecondOrderPerturbationTheory.ExactDiagonalization5.EDMatrix
— MethodEDMatrix(sector::Sector, m::SparseMatrixCSC)
Construct a matrix representation when the ket and bra spaces share the same bases.
SecondOrderPerturbationTheory.ExactDiagonalization5.EDMatrixRepresentation
— TypeEDMatrixRepresentation{S<:Sector, T} <: MatrixRepresentation
Exact matrix representation of a quantum lattice system on a target Hilbert space.
SecondOrderPerturbationTheory.ExactDiagonalization5.EDMatrixRepresentation
— MethodEDMatrixRepresentation(target::TargetSpace, table)
Construct a exact matrix representation.
SecondOrderPerturbationTheory.ExactDiagonalization5.Sector
— Typeabstract type Sector <: OperatorUnit
A sector of the Hilbert space which form the bases of an irreducible representation of the Hamiltonian of a quantum lattice system.
SecondOrderPerturbationTheory.ExactDiagonalization5.SectorFilter
— TypeSectorFilter{S} <: LinearTransformation
Filter the target bra and ket Hilbert spaces.
SecondOrderPerturbationTheory.ExactDiagonalization5.TargetSpace
— TypeTargetSpace{S<:Sector} <: VectorSpace{S}
The target Hilbert space in which the exact diagonalization method is performed, which could be the direct sum of several sectors.
SecondOrderPerturbationTheory.ExactDiagonalization5.TargetSpace
— MethodTargetSpace(sector::Sector, sectors::Sector...)
Construct a target space from sectors.
Base.count
— Methodcount(basis::BinaryBasis) -> Int
count(basis::BinaryBasis, start::Integer, stop::Integer) -> Int
Count the number of occupied single-particle states.
Base.isone
— Methodisone(basis::BinaryBasis, state::Integer) -> Bool
Judge whether the specified single-particle state is occupied for a basis.
Base.iszero
— Methodiszero(basis::BinaryBasis, state::Integer) -> Bool
Judge whether the specified single-particle state is unoccupied for a basis.
Base.iterate
— Functioniterate(basis::BinaryBasis, state=nothing)
Iterate over the numbers of the occupied single-particle orbitals.
Base.one
— Methodone(basis::BinaryBasis, state::Integer) -> BinaryBasis
Get a new basis with the specified single-particle state occupied.
Base.zero
— Methodzero(basis::BinaryBasis, state::Integer) -> BinaryBasis
Get a new basis with the specified single-particle state unoccupied.
LinearAlgebra.eigen
— Methodeigen(m::EDMatrix; nev=6, which=:SR, tol=0.0, maxiter=300, sigma=nothing, v₀=dtype(m)[]) -> Eigen
Solve the eigen problem by the restarted Lanczos method provided by the Arpack package.
QuantumLattices.:⊕
— Method⊕(sector::Sector, sectors::Union{Sector, TargetSpace}...) -> TargetSpace
⊕(target::TargetSpace, sectors::Union{Sector, TargetSpace}...) -> TargetSpace
Get the direct sum of sectors and target spaces.
QuantumLattices.:⊗
— Method⊗(bs₁::BinaryBases, bs₂::BinaryBases) -> BinaryBases
Get the direct product of two sets of binary bases.
QuantumLattices.:⊗
— Method⊗(basis₁::BinaryBasis, basis₂::BinaryBasis) -> BinaryBasis
Get the direct product of two binary bases.
QuantumLattices.QuantumOperators.matrix
— Methodmatrix(ed::ED, sector::Sector; kwargs...) -> EDMatrix
matrix(ed::ED, sector=first(ed.Hₘ.transformation.brakets); kwargs...) -> EDMatrix
Get the sparse matrix representation of a quantum lattice system in a sector of the target space.
QuantumLattices.QuantumOperators.matrix
— Methodmatrix(op::Operator, braket::NTuple{2, BinaryBases}, table; dtype=valtype(op)) -> SparseMatrixCSC{dtype, Int}
matrix(ops::Operators, braket::NTuple{2, BinaryBases}, table; dtype=valtype(eltype(ops))) -> SparseMatrixCSC{dtype, Int}
Get the CSC-formed sparse matrix representation of an operator.
Here, table
specifies the order of the operator ids.
SecondOrderPerturbationTheory.ExactDiagonalization5.productable
— Methodproductable(bs₁::BinaryBases, bs₂::BinaryBases) -> Bool
Judge whether two sets of binary bases could be direct producted.
SecondOrderPerturbationTheory.ExactDiagonalization5.sumable
— Methodsumable(bs₁::BinaryBases, bs₂::BinaryBases) -> Bool
Judge whether two sets of binary bases could be direct summed.
Strictly speaking, two sets of binary bases could be direct summed if and only if they have no intersection. The time complexity to check the intersection is O(n log n), which costs a lot when the dimension of the binary bases is huge. It is also possible to judge whether they could be direct summed by close investigations on their ids, i.e. the single-particle states and occupation number. It turns out that this is a multi-variable pure integer linear programming problem. In the future, this function would be implemented based on this observation. At present, the direct summability should be handled by the users in priori.
SecondOrderPerturbationTheory.SOPCore.BinaryConfigure
— TypeBinaryConfigure{I<:TargetSpace, P<:Int} <: CompositeDict{P, I}
BinaryConfigure(ps::Pair...)
BinaryConfigure(kv)
Construct BinaryConfigure
at a lattice. The local binary configure is given by BinaryConfigure
.
SecondOrderPerturbationTheory.SOPCore.Coefficience
— TypeCoefficience{P<:Int, I<:AbstractVector{<:Matrix{<:Number}}} <: Action
Decompose the projected-hamiltionian matrix with respect to input physical observables.
SecondOrderPerturbationTheory.SOPCore.Coefficience
— MethodCoefficience(bonds::AbstractVector{<:Bond}, observables::Dict{Int, I}; options...) where {I<:Union{AbstractVector{<:AbstractMatrix}, Tuple{Vararg{Term}}}}
Coefficience(bonds::AbstractVector{<:Bond}, observables::Dict{Int, I}; options...) where {I<:Union{AbstractVector{<:AbstractMatrix}, Tuple{Vararg{Term}}}}
Coefficience(bonds::AbstractVector{<:Bond}, npoints::Int, ob::I=Tuple{}(); options...) where {I<:Union{AbstractVector{<:AbstractMatrix}, Tuple{Vararg{Term}}}}
η
attribute in options is truncation of completeness of physical quantities. order
attribute (order=-1,0,2) choose the order of matrix of effective hamiltonian to obtain the exchange coefficiences. npoints
= length(lattice).
SecondOrderPerturbationTheory.SOPCore.PickState
— TypePickState{I<:Vector{Vector{Int}}, P<:Int} <: CompositeDict{P, I}
PickState(ps::Pair...)
PickState(kv)
Construct PickState
. Pick low-energy states at a lattice.
SecondOrderPerturbationTheory.SOPCore.ProjectState
— TypeProjectState{V<:Real, C<:Number, P<:TargetSpace}
Projected states contain eigenvalues, eigenvectors, and basis of H₀.
SecondOrderPerturbationTheory.SOPCore.ProjectState
— MethodProjectState(ops::Operators, braket::BinaryBases, table; pick::Union{UnitRange{Int}, Vector{Int}, Colon}=:)
ProjectState(ops::Operators, ts::TargetSpace, table, pick::Vector{Vector{Int}})
Construct ProjectState
. The pick::Union{UnitRange{Int}, Vector{Int}, Colon} argument picks the low-energy states. The i-th element of arguement pick vector is the loaction of low-energy states in the i-th Sector
of TargetSpace
.
SecondOrderPerturbationTheory.SOPCore.ProjectStateBond
— TypeProjectStateBond
A type. Projected states on a bond. Construct ProjectStateBond
by the ProjectState
s defined on points. When bond.kind==2, the left
(right
) corresponds to the first (second) point in bond::Bond.
SecondOrderPerturbationTheory.SOPCore.ProjectStateBond
— MethodProjectStateBond(left::ProjectState, right::ProjectState, nleft::Int, nright::Int)
The nleft
and nright
are the number of bits of left bit shift operator for left
and right
ProjectState, respectively.
SecondOrderPerturbationTheory.SOPCore.SOPT
— TypeSOPT{L<:AbstractLattice, G₁<:OperatorGenerator, G₀<:OperatorGenerator, PT<:SecondOrderPerturbation} <: Frontend
Second order perturbation theory method of a electronic quantum lattice system.
SecondOrderPerturbationTheory.SOPCore.SOPT
— MethodSOPT(lattice::AbstractLattice, hilbert::Hilbert, terms₁::Tuple{Vararg{Term}}, terms₀::Tuple{Vararg{Term}}, binaryconfigure::BinaryConfigure, lowstate::PickState; neighbors::Union{Nothing, Int, Neighbors}=nothing, boundary::Boundary=plain)
Construct the second order perturbation method for a quantum lattice system.
SecondOrderPerturbationTheory.SOPCore.SOPTMatrix
— TypeSOPTMatrix(bond::Bond, P₀::ProjectStateBond, m₀::Matrix, m₂::Matrix)
Matrix representation of the low-energy hamiltionian. The proper order for representing basis vectors is to start with the left space (bond[1]) and then proceed to the right space (bond[2]), i.e. kron(right, left).
Arguments
-bond
: bond of lattice -P₀
: projected state -m₀
: matrix representation of the zeroth order (<H₀>) of the low-energy hamiltionian -m₀₁
: matrix representation of the zeroth order (<H₁>) of the low-energy hamiltionian -m₂
: matrix representation of second order of the low-energy hamiltionian
SecondOrderPerturbationTheory.SOPCore.SecondOrderPerturationMetric
— TypeSecondOrderPerturationMetric <: Metric
Define the table metric, (:spin, :orbital) for a point, (:rcoordinate,:site, :spin, :orbital) for a bond.
SecondOrderPerturbationTheory.SOPCore.SecondOrderPerturbation
— TypeSecondOrderPerturbation{B<:BinaryConfigure, L<:PickState} <: Transformation
(::SecondOrderPerturbation)(H₁::OperatorGenerator, p₀::Dict{T,<:ProjectState}, qₚ::Dict{T,<:ProjectState}, qₘ::Dict{T,<:ProjectState}, bond::Bond) where T<:Int -> SOPTMatrix
(::SecondOrderPerturbation)(H₀::OperatorGenerator, H₁::OperatorGenerator, bond::Bond) -> SOPTMatrix
A type.
Base.:<<
— MethodBase.:(<<)(bs::BinaryBases, n::Int) -> BinaryBases
Base.:<<
— MethodBase.:(<<)(ps::ProjectState, n::Int) -> ProjectState
Left bit shift opeartor. The BinaryBasis is left shifted by n bits.
QuantumLattices.:⊕
— Method⊕(ps₁::ProjectState, ps₂::ProjectState) -> ProjectState
Get the direct sum of two projected states.
QuantumLattices.:⊗
— Method⊗(ps₁::ProjectState, ps₂::ProjectState) -> ProjectState
Get the direct product of two sets of projected states.
QuantumLattices.QuantumOperators.matrix
— Methodmatrix(ops::Operators, ts₁::TargetSpace, ts₂::TargetSpace, table) -> Matrix
matrix(ops::Operators, ts::TargetSpace, table) -> Matrix
Get the matrix of direct sum of submatrices.
QuantumLattices.QuantumOperators.matrix
— Methodmatrix(sopt::SOPT, bond::Bond) -> SOPTMatrix
Return matrix of the projected hamiltionian onto a bond of which the length is greater than 1.
QuantumLattices.dimension
— Methoddimension(ps::ProjectState) -> Int
The dimension of local low-energy hilbert space.
QuantumLattices.dimension
— Methoddimension(ps::ProjectState,::Type{T}) where T<:TargetSpace -> Int
The dimension of target space basis
.
QuantumLattices.expand
— Methodexpand(gen::OperatorGenerator, bond::Bond) -> Operators
SecondOrderPerturbationTheory.SOPCore.:⊠
— Method⊠(bs₁::BinaryBases, bs₂::BinaryBases) -> Tuple{BinaryBases, Vector{Int}}
Get the direct product of two sets of binary bases, and the permutation vector. oxtimes=⊠
SecondOrderPerturbationTheory.SOPCore.SpinOperatorGenerator
— MethodSpinOperatorGenerator(st::SOPT, coef::Coefficience; η::Float64=1e-14) -> OperatorGenerator
Only support the pseudospin-1/2 case. The zeeman term (Onsite term) is ommited when the ground states are not Krameter states.
SecondOrderPerturbationTheory.SOPCore.coefficience_project
— Functioncoefficience_project(m₂::Matrix{<:Number}, bond::Bond, ob::Dict{Int, <:AbstractVector{<:Matrix{<:Number}}}, η::Float64=1e-14) -> Matrix
Get the coefficience of exchange interaction. The row index corresponds to bond[1], column index corresponds to bond[2].
SecondOrderPerturbationTheory.SOPCore.coefficience_project
— Methodcoefficience_project(matbd::SOPTMatrix, coef::Coefficience, hilbert::Hilbert) -> Matrix
SecondOrderPerturbationTheory.SOPCore.hamiltonianeff
— Functionhamiltonianeff(psp::ProjectStateBond, psq::ProjectStateBond, h1::Operators, table::Table, bond::Union{Bond, Nothing}=nothing) ->Tuple{Matrix, Matrix, Matrix}
Get the effective Hamiltonian, the first and second terms of the result correspond to the zero-th and 2nd perturbations respectively.
SecondOrderPerturbationTheory.SOPCore.observables_project
— Methodobservables_project(terms::Tuple{Vararg{Term}}, point::Point, hilbert::Hilbert, psp::ProjectState) -> Vector{Matrix}
The order of Term
in terms (Onsite) tuple determines the order of matrix in the result.
SecondOrderPerturbationTheory.SOPCore.projectstate_points
— Methodprojectstate_points(bc::BinaryConfigure, ls::PickState, H₀::OperatorGenerator, points::AbstractVector{<:Point}) -> Tuple{Dict, Dict, Dict, Dict}
Construct the ProjectState
` type of low-energy states with N-particle space, high-energy states with (N+1)-particle space, high-energy states with (N-1)-particle space, and high-energy states with N-particle space.
SecondOrderPerturbationTheory.SOPCore.projectstate_points
— Methodprojectstate_points(sopt::SOPT) -> Tuple{Dict{Int, ProjectState}, Dict{Int, ProjectState}, Dict{Int, ProjectState}, Dict{Int, ProjectState}}
Construct ProjectState
on all points. Construct the ProjectState
` type of low-energy states with N-particle space, high-energy states with (N+1)-particle space, high-energy states with (N-1)-particle space, and high-energy states with N-particle space.
–>