QuantumLattices.DegreesOfFreedom.MetricMethod
Metric(::Magnonic, hilbert::Hilbert{<:Fock{:b}}) -> OperatorIndexToTuple

Get the index-to-tuple metric for a quantum spin system after the Holstein-Primakoff transformation.

source
SpinWaveTheory.LSWTType
LSWT{
    K<:TBAKind{:BdG},
    L<:AbstractLattice,
    S<:OperatorGenerator,
    HP<:HolsteinPrimakoff,
    H₀<:CategorizedGenerator,
    H₂<:CategorizedGenerator,
    H<:CategorizedGenerator{<:OperatorSum{<:Quadratic}},
    C<:AbstractMatrix
} <: TBA{K, H, C}

Linear spin wave theory for magnetically ordered quantum lattice systems.

source
SpinWaveTheory.LSWTMethod
LSWT(lattice::AbstractLattice, hilbert::Hilbert{<:Spin}, terms::OneOrMore{Term}, magneticstructure::MagneticStructure; neighbors::Union{Int, Neighbors}=nneighbor(terms))

Construct a LSWT.

source
SpinWaveTheory.MagneticStructureMethod
MagneticStructure(cell::AbstractLattice, moments::Dict{Int, <:Union{AbstractVector, NTuple{2, Number}}}; unit::Symbol=:radian)

Construct the magnetic structure on a given lattice with the given moments.

source
QuantumLattices.add!Method
add!(dest::OperatorSum, qf::Quadraticization{Magnonic}, m::Operator{<:Number, <:ID{CoordinatedIndex{<:Index{<:FockIndex{:b}}}, 2}}; kwargs...) -> typeof(dest)

Get the unified quadratic form of a rank-2 operator and add it to destination.

source
SpinWaveTheory.rotationMethod
rotation(destination::AbstractVector{<:Number}; kwargs...) -> SMatrix{3, 3}
rotation(destination::Tuple{Number, Number}; unit::Symbol=:radian) -> SMatrix{3, 3}

Get the rotation matrix which rotates [0, 0, 1] to the direction of the destination vector.

source