p+ip Superconductor on Square Lattice
In this section, it is illustrated how the Berry curvatures and Chern numbers of free energy bands can be computed with the p+ip superconductor on the square lattice as the example.
Energy bands
The following codes could compute the energy bands of the Bogoliubov quasiparticles of the p+ip topological superconductor on the square lattice.
using QuantumLattices
using TightBindingApproximation
using Plots
# define the unitcell of the square lattice
unitcell = Lattice([0.0, 0.0]; vectors=[[1.0, 0.0], [0.0, 1.0]])
# define the Hilbert space of the p+ip superconductor (single-orbital spinless complex fermion)
hilbert = Hilbert(Fock{:f}(1, 1), length(unitcell))
# define the terms
## nearest-neighbor hopping
t = Hopping(:t, 1.0, 1)
## onsite energy as the chemical potential
μ = Onsite(:μ, 3.5)
## p+ip pairing term
Δ = Pairing(
:Δ, Complex(0.5), 1, Coupling(𝕔(:, :, :, :), 𝕔(:, :, :, :));
amplitude=bond->exp(im*azimuth(rcoordinate(bond)))
)
# define the Bogoliubov-de Gennes formula for the p+ip superconductor
sc = Algorithm(Symbol("p+ip"), TBA(unitcell, hilbert, (t, μ, Δ)))
# define the path in the reciprocal space to compute the energy bands
path = ReciprocalPath(reciprocals(unitcell), rectangle"Γ-X-M-Γ", length=100)
# compute the energy bands along the above path
energybands = sc(:EB, EnergyBands(path))
# plot the energy bands
plot(energybands)
Berry curvature and Chern number
The Berry curvatures and the Chern numbers of the quasiparticle bands can be calculated in the unitcell of the reciprocal space:
# define the Brillouin zone
brillouin = BrillouinZone(reciprocals(unitcell), 100)
# compute the Berry curvatures and Chern numbers of both quasiparticle bands
berry = sc(:BerryCurvature, BerryCurvature(brillouin, [1, 2]));
# plot the Berry curvatures
plot(berry)
The Berry curvatures can also be computed on a reciprocal zone beyond the reciprocal unitcell:
# define the reciprocal zone
reciprocalzone = ReciprocalZone(
reciprocals(unitcell), -2.0=>2.0, -2.0=>2.0;
length=201, ends=(true, true)
)
# compute the Berry curvature
berry = sc(:BerryCurvatureExtended, BerryCurvature(reciprocalzone, [1, 2]))
# plot the Berry curvature
plot(berry)
The total Berry curvatures of occupied bands can also be computed on a reciprocal path with Kubo method:
# compute the total Berry curvature
berry = sc(:BerryCurvaturePath, BerryCurvature(path, Kubo(0.0)))
# plot the Berry curvature
plot(berry)
Edge states
With tiny modification on the algorithm, the edge states of the p+ip topological superconductor could also be computed:
# define a cylinder geometry
lattice = Lattice(unitcell, (1, 100), ('P', 'O'))
# define the new Hilbert space corresponding to the cylinder
hilbert = Hilbert(site=>Fock{:f}(1, 1) for site=1:length(lattice))
# define the new Bogoliubov-de Gennes formula
sc = Algorithm(Symbol("p+ip"), TBA(lattice, hilbert, (t, μ, Δ)))
# define the new path in the reciprocal space to compute the edge states
path = ReciprocalPath(reciprocals(lattice), line"Γ₁-Γ₂", length=100)
# compute the energy bands along the above path
edgestates = sc(:Edge, EnergyBands(path))
# plot the energy bands
plot(edgestates)
Note that when μ>4 or μ<-4, the superconductor is topologically trivial such that there are no gapless edge states on the cylinder geometry:
# compute the edge states with a new onsite energy such that the superconductor is trivial
trivial = sc(:Trivial, EnergyBands(path), (μ=4.5,))
# plot the energy bands
plot(trivial)
Auto-generation of the analytical expression of the Hamiltonian matrix
Combined with SymPy, it is also possible to get the analytical expression of the free Hamiltonian in the matrix form:
using SymPy: Sym, symbols
using QuantumLattices
using TightBindingApproximation
unitcell = Lattice(
[zero(Sym), zero(Sym)];
vectors=[[one(Sym), zero(Sym)], [zero(Sym), one(Sym)]]
)
hilbert = Hilbert(site=>Fock{:f}(1, 1) for site=1:length(unitcell))
t = Hopping(:t, symbols("t", real=true), 1)
μ = Onsite(:μ, symbols("μ", real=true))
Δ = Pairing(
:Δ, symbols("Δ", real=true), 1, Coupling(𝕔(:, :, :, :), 𝕔(:, :, :, :));
amplitude=bond->exp(im*azimuth(rcoordinate(bond)))
)
sc = TBA(unitcell, hilbert, (t, μ, Δ))
k₁ = symbols("k₁", real=true)
k₂ = symbols("k₂", real=true)
m = matrix(sc, [k₁, k₂])
\[\left[\begin{smallmatrix}2 t \cos{\left(k₁ \right)} + 2 t \cos{\left(k₂ \right)} + μ & - Δ e^{i k₁} + i Δ e^{i k₂} - i Δ e^{- i k₂} + Δ e^{- i k₁}\\Δ e^{i k₁} + i Δ e^{i k₂} - i Δ e^{- i k₂} - Δ e^{- i k₁} & - 2 t \cos{\left(k₁ \right)} - 2 t \cos{\left(k₂ \right)} - μ\end{smallmatrix}\right]\]